Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1186-1195, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621965

RESUMO

Polysaccharides from medicinal plant resources are a kind of polymers extracted from medicinal plants. They are complex long chains formed by different monosaccharides connected via glucosidic bonds. These polysaccharides usually have straight chain and branched chain structures, and their relative molecular weight changes greatly. Modern studies have shown that the biological activi-ty of polysaccharides from medicinal plant resources is closely related to their relative molecular weight. This paper first reviewed the preparation and detection methods of polysaccharides from medicinal plant resources with different relative molecular weights. Then, the paper summarized and analyzed the general experience of the correlation between efficacy and relative molecular weight of polysaccharides from medicinal plant resources with different molecular weights. It was considered that polysaccharides with large relative molecular weights(>100 kDa) play a leading role in immune regulation. Polysaccharides with medium relative molecular weights(10-100 kDa) play a leading role in immune regulation and the protection of the liver. Polysaccharides with small relative molecular weights(<10 kDa) play a leading role in anti-oxidation, regulation of intestinal flora, regulation of blood glucose and lipids, anti-fatigue, and the protection of nerves. Therefore, precise development of polysaccharides from medicinal plant resources based on relative molecular weight is expected to improve their biological activity and application value.


Assuntos
Plantas Medicinais , Plantas Medicinais/química , Peso Molecular , Polissacarídeos/química , Monossacarídeos/química
2.
Int J Biol Macromol ; 261(Pt 1): 129674, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280710

RESUMO

The pro-tumorigenic M2-type tumor-associated macrophages (TAMs) in the immunosuppressive tumor microenvironment (TME) promote the progression, angiogenesis, and metastasis of breast cancer. The repolarization of TAMs from an M2-type toward an M1-type holds great potential for the inhibition of breast cancer. Here, we report that Lycium barbarum polysaccharides (LBPs) can significantly reconstruct the TME by modulating the function of TAMs. Specifically, we separated four distinct molecular weight segments of LBPs and compared their repolarization effects on TAMs in TME. The results showed that LBP segments within 50-100 kDa molecular weight range exhibited the prime effect on the macrophage repolarization, augmented phagocytosis effect of the repolarized macrophages on breast cancer cells, and regression of breast tumor in a tumor-bearing mouse model. In addition, RNA-sequencing confirms that this segment of LBP displays an enhanced anti-breast cancer effect through innate immune responses. This study highlights the therapeutic potential of LBP segments within the 50-100 kDa molecular weight range for macrophage repolarization, paving ways to offer new strategies for the treatment of breast cancer.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Neoplasias , Camundongos , Animais , Macrófagos Associados a Tumor , Peso Molecular , Medicamentos de Ervas Chinesas/farmacologia , Macrófagos , Microambiente Tumoral , Neoplasias/patologia
3.
Adv Drug Deliv Rev ; 203: 115134, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37926218

RESUMO

Virus-like particles (VLPs) have natural structural antigens similar to those found in viruses, making them valuable in vaccine immunization. Furthermore, VLPs have demonstrated significant potential in drug delivery, and emerged as promising vectors for transporting chemical drug, genetic drug, peptide/protein, and even nanoparticle drug. With virus-like permeability and strong retention, they can effectively target specific organs, tissues or cells, facilitating efficient intracellular drug release. Further modifications allow VLPs to transfer across various physiological barriers, thus acting the purpose of efficient drug delivery and accurate therapy. This article provides an overview of VLPs, covering their structural classifications, deliverable drugs, potential physiological barriers in drug delivery, strategies for overcoming these barriers, and future prospects.


Assuntos
Vacinas de Partículas Semelhantes a Vírus , Vírus , Humanos , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Antígenos
4.
Nanomicro Lett ; 15(1): 197, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572220

RESUMO

Gene therapy offers potentially transformative strategies for major human diseases. However, one of the key challenges in gene therapy is developing an effective strategy that could deliver genes into the specific tissue. Here, we report a novel virus-like nanoparticle, the bioorthgonal engineered virus-like recombinant biosome (reBiosome), for efficient gene therapies of cancer and inflammatory diseases. The mutant virus-like biosome (mBiosome) is first prepared by site-specific codon mutation for displaying 4-azido-L-phenylalanine on vesicular stomatitis virus glycoprotein of eBiosome at a rational site, and the reBiosome is then prepared by clicking weak acid-responsive hydrophilic polymer onto the mBiosome via bioorthogonal chemistry. The results show that the reBiosome exhibits reduced virus-like immunogenicity, prolonged blood circulation time and enhanced gene delivery efficiency to weakly acidic foci (like tumor and arthritic tissue). Furthermore, reBiosome demonstrates robust therapeutic efficacy in breast cancer and arthritis by delivering gene editing and silencing systems, respectively. In conclusion, this study develops a universal, safe and efficient platform for gene therapies for cancer and inflammatory diseases.

6.
Int J Nanomedicine ; 14: 3645-3667, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190817

RESUMO

Background: Neo-adjuvant chemotherapy is an effective strategy for improving treatment of breast cancers. However, the efficacy of this treatment strategy is limited for treatment of triple negative breast cancer (TNBC). Gene therapy may be a more effective strategy for improving the prognosis of TNBC. Methods: A novel 25 nucleotide sense strand of miRNA was designed to treat TNBC by silencing the Slug gene, and encapsulated into DSPE-PEG2000-tLyp-1 peptide-modified functional liposomes. The efficacy of miRNA liposomes was evaluated on invasive TNBC cells and TNBC cancer-bearing nude mice. Furthermore, functional vinorelbine liposomes were constructed to investigate the anticancer effects of combined treatment. Results: The functional miRNA liposomes had a round shape and were nanosized (120 nm). Functional miRNA liposomes were effectively captured by TNBC cells in vitro and were target to mitochondria. Treatment with functional liposomes silenced the expression of Slug and Slug protein, inhibited the TGF-ß1/Smad pathway, and inhibited invasiveness and growth of TNBC cells. In TNBC cancer-bearing mice, functional miRNA liposomes exerted a stronger anticancer effect than functional vinorelbine liposomes, and combination therapy with these two formulations resulted in nearly complete inhibition of tumor growth. Preliminary safety evaluations indicated that the functional miRNA liposomes did not affect body weight or cause damage to any major organs. Furthermore, the functional liposomes significantly increased the half-life of the drug in the blood of cancer-bearing nude mice, and increased drug accumulation in breast cancer tissues. Conclusion: In this study, we constructed novel functional miRNA liposomes. These liposomes silenced Slug expression and inhibited the TGF-ß1/Smad pathway in TNBC cells, and enhanced anticancer efficacy in mice using combined chemotherapy. Hence, the present study demonstrated a promising strategy for gene therapy of invasive breast cancer.


Assuntos
Inativação Gênica , MicroRNAs/metabolismo , Nanopartículas/química , Tamanho da Partícula , Fatores de Transcrição da Família Snail/genética , Neoplasias de Mama Triplo Negativas/terapia , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Feminino , Humanos , Lipossomos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
7.
World J Gastroenterol ; 10(7): 1032-6, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15052688

RESUMO

AIM: To investigate the protective effects of gastric pentadecapeptide BPC 157 on acute and chronic gastric ulcers in rats and to compare the results in therapy of human gastric ulcers by different administration methods. METHODS: Gastric pentadecapeptide BPC 157 was administered (initial single or continuous administration) into rats either intragastrically or intramuscularly before (induced acute gastric ulcer) or after (induced chronic gastric ulcer) the applications of inducing agents, and each animal was sacrificed to observe the protective effects of BPC 157 on gastric ulcers. RESULTS: Both intramuscular (im) and intragastric (ig) administration of BPC 157 could apparently reduce the ulcer area and accelerate the healing of induced ulcer in different models and the effect of im administered BPC 157 was better than that of ig. The rats treated with higher dosages (400 ng/kg, 800 ng/kg) of BPC 157 (im and ig) showed significantly less lesion (P<0.01 vs excipient or saline control), the inhibition ratio of ulcer formation varied between 45.7% and 65.6%, from all measurements except 400 ng/kg BPC 157 in pylorus ligation induced model (P<0.05), in which the inhibition rate was 54.2%. When im administered (800 ng/kg BPC 157) in three models, the inhibition ratio of ulcer formation was 65.5%, 65.6% and 59.9%, respectively, which was better than that of famotidine (its inhibition rate was 60.8%, 57.2% and 34.3%, respectively). Continuous application of BPC 157 (in chronic acetate induced gastric ulcer) could accelerate rebuilding of glandular epithelium and formation of granulation tissue (P<0.05 at 200 ng/kg and P<0.01 at 400 ng/kg and 800 ng/kg vs excipient or saline control). CONCLUSION: Both im and ig administered gastric pentadecapeptide BPC 157 can apparently ameliorate acute gastric ulcer in rats and antagonize the protracted effect of acetate challenge on chronic ulcer. The effect of im administration of BPC 157 is better than that of ig, and the effective dosage of the former is lower than that of the latter.


Assuntos
Antiulcerosos/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Proteínas/administração & dosagem , Úlcera Gástrica/patologia , Animais , Injeções Intramusculares , Masculino , Ratos , Ratos Wistar , Estômago
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA